A Human/Robotic Exploration Design Reference Campaign **Architecture: Opportunities for Commercial Missions**

James Head, Carle Pieters, David Scott, Brandon Johnson, Ross Potter: Brown Univ., Providence, RI USA

Jeffrey Hoffman: MIT, Cambridge, MA USA

Bernard Foing: ESA ESTEC, Noordwijk, The Netherlands Lev Zelenyi, Igor Mitrofanov: Institute for Space Research, RAS, Moscow, Russia Mikhail Marov, Alexander Basilevsky, Mikhail Ivanov: Vernadsky Institute, RAS, Moscow, Russia

Ralf Jaumann, DLR Institute of Planetary Research, Berlin, Germany Long Xiao: China University of Geosciences, Wuhan, Hubei, China Junichi Haruyama, Makiko Ohtake: ISAS, JAXA, Sagamihara, Japan P. Senthil Kumar: CSIR-NGRI, Hyderabad, India

Oded Aharonson: Weizmann Institute, Rehovot, Israel

Apollo Lunar Exploration Program: Six Scientific Expeditions to the Moon

Solar System Science

The Moon as a Cornerstone for Solar System Science

- -One or more spacecraft currently/recently orbiting each of the terrestrial planets.
- -We have fundamental questions about the formation and evolution of each of these planetary bodies, and together the terrestrial planetary bodies as a whole.
- -Many of these questions can only be answered in the context of lunar exploration

- 1. The importance of coordinated human/robotic exploration.
- 2. Why the Orientale multi-ring basin?
- 3. Human/Robotic Scientific Destinations at Orientale.
- 4. The Human/Robotic Architecture: A Basis for Design Reference Missions.

- 1. The importance of coordinated human/robotic exploration.
- 2. Why the Orientale multi-ring basin?
- 3. Human/Robotic Scientific Destinations at Orientale.
- 4. The Human/Robotic Architecture: A Basis for Design Reference Missions.

Human/Robotic Exploration Optimization Centers on Six Themes

- I) <u>Precursor</u> (What do we need to know before we send humans?).
- II) <u>Context</u> (What are the robotic mission requirements for final landing site selection and regional context for landing site results?).
- III) <u>Infrastructure/Operations</u> (What specific robotic capabilities are required to optimize human scientific exploration performance?).
- IV) <u>Interpolation</u> (How do we use robotic missions to interpolate between human traverses?).
- V) <u>Extrapolation</u> (How do we use robotic missions to extrapolate beyond the human exploration radius?).
- VI) <u>Progeny</u> (What targeted robotic successor missions might be sent to the region to follow up on discoveries during exploration and from post-campaign analysis?).

What is the Relationship of Human and Robotic Exploration?

- 1. The importance of coordinated human/robotic exploration.
- 2. Why the Orientale multi-ring basin?
- 3. Human/Robotic Scientific Destinations at Orientale.
- 4. The Human/Robotic Architecture: A Basis for Design Reference Missions.

Formation and Evolution of Planetary Crusts

SSERVI Evolution and Environment of Exploration Destinations

MICROSYMPOSIUM 56 The Crust of the Moon: Insight into Early Planetary Processes March 14-15, 2015 - The Woodlands Waterway Marriott - The Woodlands, TX

- 1. Crustal geometry/physical structure
- 2. Crustal chemistry/mineralogy/petrology;
- 3. Exogenic crustal modification by impacts;
- 4. Chronology of crustal formation/evolution.

Lunar Orientale Impact Basin:
The Type Area for Lunar Basin Formation and Evolution.

Orientale Basin: Rings & Geologic Units

Hevelius Formation (Basin Ejecta Deposit)

Montes Rook Fm. (Knobby, Domical Deposit)

Maunder Formation (Basin Impact Melt Deposit)

(J. McCauley, D. Wilhelms, D. Scott, K. Howard, C. Hodges)

Composition of the Ejecta from the Orientale Basin: Crust and Mantle

Ejecta Thickness (Isopach) Map of the Hevelius Formation

Structure and Composition of the Lunar Crust: The Magma Ocean Model

Megaregolith (~10 km thick)

Upper Anorthositic Crust (~15 km thick)

Lower Noritic Crust (~25 km thick)

- Crust averages ~50 ±16 km thick.
- Upper and lower crust about equal.
- Upper crust heavily modified in the upper ~10 km by impact processes.

Hevelius Formation (Basin Ejecta Deposit)

Feldspathic breccias; homogeneous, well-mixed.

Cordillera Mountains:

Feldspathic breccias; unweathered.

Montes Rook Fm. (Knobby, Domical Deposit)

Feldspathic breccias; some anorthosite blocks.

Outer Rook Mountains:

Norites, noritic anorthosite and anorthosite; more crystalline blocks.

Inner Rook Mountains:

Massifs are crystalline anorthosite; discrete peaks and clusters of peaks.

Maunder Formation (Basin Impact Melt Deposit)

(Pieters et al., 2009, 2011; Head et al., 2010, 2012; Cheek et al., 2012)

Orientale Impact Melt Sea

Maunder Formation (Basin Impact Melt Deposit)

(Wilson and Head, 2010; Vaughan et al, 2011, 2012; Spudis et al., 2014; Cassanelli and Head, 2016)

Lunar Orientale Basin: Link to Apollo Missions Environments/Results

- 1. The importance of coordinated human/robotic exploration.
- 2. Why the Orientale multi-ring basin?
- 3. Human/Robotic Scientific Destinations at Orientale.
- 4. The Human/Robotic Architecture: A Basis for Design Reference Missions.

Region of Interest (ROI) 1: Origin of Basin Rings/Crustal Structure

-If the Outer Rook ring represents the transient cavity rim crest, what is the origin of the Cordillera mountain ring and the Montes Rook Formation?

ROI 2: What is the Origin of the Inner Rook Mountains?

ROI 3-Orientale Impact Melt Sea

Maunder Formation (Basin Impact Melt Deposit)

(Wilson and Head, 2010; Vaughan et al, 2011, 2012; Spudis et al., 2014; Cassanelli and Head, 2016)

- 1. The importance of coordinated human/robotic exploration.
- 2. Why the Orientale multi-ring basin?
- 3. Human/Robotic Scientific Destinations at Orientale.
- 4. The Human/Robotic Architecture: A Basis for Design Reference Missions.

Lunar Science for Landed Missions Workshop

- I) <u>Precursor</u> (What do we need to know before we send humans?).
- II) <u>Context</u> (What are the robotic mission requirements for final landing site selection and regional context for landing site results?).
- III) <u>Infrastructure/Operations</u> (What specific robotic capabilities are required to optimize human scientific exploration performance?).
- IV) <u>Interpolation</u> (How do we use robotic missions to interpolate between human traverses?).
- V) <u>Extrapolation</u> (How do we use robotic missions to extrapolate beyond the human exploration radius?).
- VI) <u>Progeny</u> (What targeted robotic successor missions might be sent to the region to follow up on discoveries during exploration and from post-campaign analysis?).

